Bologna, 2 dicembre 2021 Ing. Stefano Casini

VIBRAZIONI TRASMESSE ALL'OPERATORE DI MACCHINE MOVIMENTO TERRA: UNA NORMA UNI PER STANDARDIZZARE LE DICHIARAZIONI DEI COSTRUTTORI

MONDO IDEALE E MONDO REALE

Direttiva macchine:

impone di indicare l'emissione vibratoria della macchina se supera gli 0,5 m/s2

Lo stato dell'arte:

ogni costruttore dichiara i dati di emissione vibratoria come gli pare

ESEMPI DI DICHIARAZIONE DI EMISSIONE VIBRATORIA

	DELLE EMISSIONI DI VIBRAZION formità a EN 12096	NI
	Valore	Incertezza
Vibrazione al corpo intero (ISO 2631-1)	0,84 m/s ²	0,42 m/s ²
Vibrazione mano-braccio (ISO 5349-1)	2,29 m/s ²	

Tipo di	Tipica attività operativa	Live	Livelli di vibrazioni		Fattori scenario		
macchina	ripica attivita operativa	asse X	asse Y	asse Z	asse X	asse Y	asse Z
	scavo	0,33	0,21	0,19	0,19	0,12	0,10
Escavatore compatto cingolato	impiego di un martello idraulico	0,49	0,28	0,36	0,20	0,13	0,17
S0 60 L	trasferimento	0,45	0,39	0,62	0,17	0,18	0,28

VIBRAZIONI CORPO INTERO		
Livello di vibrazione	m/s²	0,44
Incertezza di misura	m/s²	0,22

Prove effettuate a vuoto su superficie piana e compatta.

INCAIL

Livello di vibrazione

Mani/braccia: l'accelerazione a cui sono

sottoposte le mani e le braccia

dell'operatore è inferiore

a 2,5 m/s2.

Corpo intero: accelerazione a cui è sottoposto

ilcorpo dell'operatore è inferiore

a 0.5 m/s2.

NOTA: l'accelerazione viene misurata in conformità alle norme ISO 2631/1; ISO 5349 e SAEJ1166.

Macchina	Corpo completo in m/s² (Soglia d'azione < 0,5)					
Macchina	Trincea VRD	Terrapieno	Traslazione su erba			
ViO17	< 0,5	1,1	1,0			
ViO20-3	< 0,5	1,0	0,8			
ViO25-3	< 0,5	1,0	0,9			
ViO30-3	< 0,5	1,3	1,1			

Misure effettuate:

- · Trincea VRD: 5 cicli di scavo e pendenza a sinistra 45°.
- Terrapieno: 3 cicli di materiale di riporto.
- Traslazione su erba: Un'andata e ritorno in circa 1 minuto con diversi cambiamenti di direzione.

Misurato conformemente alla norma ISO EN 1032 (2003) per il corpo completo e alle norme NF EN ISO 5349-1 (2002) e NF EN ISO 5349-2 (2001) per il sistema manobraccio.

ESEMPI DI DICHIARAZIONE DI EMISSIONE VIBRATORIA

LIVELLI DI VIBRAZIONE

Quanto utilizzata per lo scopo cui è preposta, i livelli di vibrazione della macchina di movimentazione terra trasmessi dal sedile dell'operatore sono inferiori o pari ai livelli di vibrazione testati a fronte di macchinari di pari categoria, in conformità a ISO 7096.

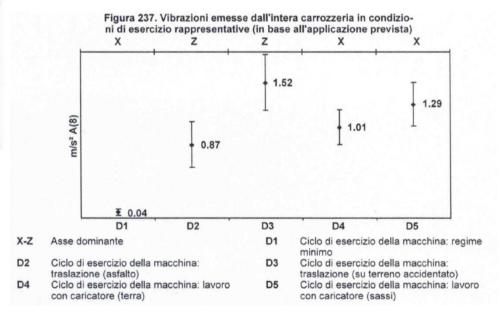
Il valore d'accelerazione effettivo per mani e braccia è inferiore a o pari a $2.5\,$ m/s 2 , il fattore di dubbio per questo valore è di $1.2\,$ m/s 2 secondo EN12096:1997.

Il valore d'accelerazione effettivo per il corpo è inferiore a o pari a 0,5 m/s², il fattore di dubbio per questo valore è di 0,2 m/s² secondo EN12096:1997.

Questi valori sono stati determinati su una macchina di riferimento e sono stati misurati durante la condizione operativa tipica indicata di seguito in base alle procedure di misurazione previste dalle norme ISO 2631/1 e ISO 5349.

VIBRAZIONI - CONDIZIONI OPERATIVE

Operazioni di scavo (Scavo-carico-rotazione-scarico-rotazione)


Il livello di vibrazione trasmesso a tutto il corpo dell'operatore è inferiore a 0.5 m/s² (1.64 ft/s²). Questi risultati sono stati ottenuti utilizzando un indicatore di accelerazione e la macchina in modalità scavo con un cucchialo standard.

NOTA: I livelli di vibrazione emessi variano in funzione delle condizioni particolari d'utilizzo e a seconda del tipo di terreno. Per questo non sono rappresentativi per le diverse condizioni di applicazione conformemente all'uso normale della macchina definito in questo manuale. Di conseguenza, questi valori non possono essere utilizzati per determinare l'esposizione dell'operatore alle vibrazioni in conformità alla Direttiva Europea 2002/44/CE. Si consiglia invece di misurare i livelli di vibrazione in effettive condizioni di lavoro. Se non è possibile, usare la tabella a seguito. Questa tabella è estratta dalla nota informativa ISO/TR 25398:2006. (ISO/TR/25398; Macchine per movimento di terra - Linee guida per la valutazione del rischio da esposizione a vibrazioni a tutto il corpo sulle macchine con operatore a bordo - Utilizzo dei dati armonizzati misurati da Istituti Internazionali, da organizzazioni e dai fabbricanti).

Specifiche di	Media			Deviazione standard		
funzionamento	1,4*a w,eqx	1,4*aw, eqy	aw,eqz	1.4*Sx	1.4*Sy	Sz
Scavo	0.44 m/s ²	0.27 m/s ²	0.30 m/s ²	0.24 m/s ²	0.16 m/s ²	0.17 m/s ²
	(1.44 ft/s ²)	(0.89 ft/s ²)	(0.98 ft/s ²)	(0.79 ft/s ²)	(0.52 ft/s ²)	(0.56 ft/s ²)
Martello demolitore	0.53 m/s ²	0.31 m/s ²	0.55 m/s ²	0.30 m/s ²	0.18 m/s ²	0.28 m/s ²
	(1.74 ft/s ²)	(1.02 ft/s ²)	(1.80 ft/s ²)	(0.98 ft/s ²)	(0.59 ft/s ²)	(0.92 ft/s ²)
Cava	0.65 m/s ²	0.42 m/s ²	0.61 m/s ²	0.21 m/s ²	0.15 m/s ²	0.32 m/s ²
	(2.13 ft/s ²)	(1.38 ft/s ²)	(2.00 ft/s ²)	(0.69 ft/s ²)	(0.49 ft/s ²)	(1.05 ft/s ²)
Movimenti associati	0.48 m/s ²	0.32 m/s ²	0.79 m/s ²	0.19 m/s ²	0.20 m/s ²	0.23 m/s ²
	(1.57 ft/s ²)	(1.05 ft/s ²)	(2.59 ft/s ²)	(0.62 ft/s ²)	(0.66 ft/s ²)	(0.75 ft/s ²)

ESEMPI DI DICHIARAZIONE DI EMISSIONE VIBRATORIA

Valore di emission	ne vibratoria dichiarata conform	nemente all'EN 12096	Unità: m/s ²
Vibrazioni	Ciclo di lavoro Valore misurato di emissione vibratoria, a		Incertezza, K
	Scavo stradale e reti	< 0,5	_
Corpo completo in m/s²	Livellamento	0,59	0,11
Corpo compicio in in/s	Spostamento	0,93	0,21
	Martello	< 0,5	
Vale	ori determinati conformemente	alle norme ISO 5349-2 & NF EN 103	2
Ciclo di lavoro	Definizione del ciclo di lavoro		
Scavo stradale e reti	Lavoro detto di ispezione; movimento della benna mentre scava nel suolo (terra battuta).		
Livellamento	Avanzamento con lama in posizione bassa di livellamento e arretramento con lama sollevata; su terra battuta.		
Spostamento	Circuiti ciclici sull'area di stoccaggio in ghiaia (velocità approssimativa 4km/h) senso orario.		
Martello	Funzionamento dell'infrangi roccia idraulico per 20 secondi su una piastra in acciaio di 100x50x5cm posta sul suolo.		

INCIL

CRITICITA' LEGATE ALL'ASSENZA DI STANDARDIZZAZIONE NELLA DICHIARAZIONE DELL'EMISSIONE VIBRATORIA: ASPETTI GENERALI

- La stessa tipologia di macchina proveniente da costruttori diversi non sempre è confrontabile perché lo standard utilizzato per la misura delle vibrazioni è differente
- 2. Spesso lo standard utilizzato (ISO 2631-1 o ISO 1032) è generico, e non è indicata la modalità operativa cui si riferiscono i valori misurati
- 3. In assenza di informazioni sulla modalità operativa oggetto di prova, quanto sono affidabili i valori dichiarati dai costruttori per la valutazione del rischio da parte dell'utilizzatore finale?

INCIL

CRITICITA' LEGATE ALL'ASSENZA DI STANDARDIZZAZIONE NELLA DICHIARAZIONE DELL'EMISSIONE VIBRATORIA: ASPETTI PRATICI

- Ogni anno INAIL eroga finanziamenti del 65% a fondo perduto per la sostituzione di macchinari con altri del medesimo tipo che vibrano il 20% in meno (Bando ISI)
- Buona parte delle richieste riguardano escavatori e pale meccaniche (stimiamo un giro d'affari tra i 30 e i 50 milioni di euro l'anno)
- Si riscontrano difficoltà da parte dei funzionari INAIL per verificare l'effettiva diminuzione del 20% parte della nuova macchina, con consegu delle domande di finanziamento

INCIL

VANTAGGI LEGATI ALL'UTILIZZO DI UNA NORMA CHE STANDARDIZZA LE PROVE E LE DICHIARAZIONI DI EMISSIONE VIBRATORIA

- Procedure di prova standardizzate uguali per tutti e formato di presentazione dei valori dell'emissione vibratoria ben definiti (vantaggi per i costruttori)
- 2. Dati di emissione vibratoria confrontabili tra costruttori diversi e tra modelli diversi del medesimo costruttore (vantaggi per i costruttori, gli utilizzatori e per i funzionari INAIL)
- 3. Dati di emissione vibratoria più attendibili per l'utilizzo nella stesura del DVR vibrazioni (vantaggi per gli utilizzatori/datori di lavoro, RSPP)

INCIL

IL PERCORSO DELLA NORMA

- All'interno della Commissione Acustica e Vibrazioni dell'UNI viene istituito un Gruppo di Lavoro GL06 composto da esperti dell'INAIL, del CNR e delle Università
- L'obiettivo è preparare una norma per fornire una metodologia univoca per valutare il valore delle vibrazioni trasmesse all'operatore attraverso il sedile dalle macchine movimento terra, e definire un formato predefinito per la presentazione dei risultati della valutazione
- In seguito la partecipazione al gruppo di lavoro viene estesa ad osservatori CUNA ed al rappresentante di UNACEA (associazione di costruttori di macchine movimento terra)
- L'ambito di applicazione della norma viene limitato a escavatori, caricatori e terne; in futuro il GL06 deciderà se ampliare l'ambito di applicazione a tutte le famiglie di Macchine Movimento Terra definite nella UNI 6165

INC/IL

LA STRUTTURA DELLA NORMA

- La struttura ricalca quella delle norme europee
- La parte generale comprende le definizioni, la strumentazione, la caratterizzazione dell'emissione vibratoria, l'ambiente di prova ed i procedimenti di misurazione, il contenuto del rapporto di prova e la presentazione dei risultati
- Gli allegati generali contengono un esempio numerico, la valutazione dell'incertezza, ed un'indicazione sulla dichiarazione dell'emissione vibratoria in presenza di attrezzature di lavoro non previste in origine dal costruttore
- Infine c'è un allegato specifico per ciascuna famiglia di macchine dove vengono indicate quali sono le modalità operative da sottoporre a prova (prese da UNI CEN/TS 15730), e quali le condizioni di funzionamento della macchina durante la prova

INCIL

ALCUNE DEFINIZIONI IMPORTANTI

modalità operativa K

- Attività eseguita da una macchina per la quale si determina il valore di emissione vibratoria.
- Esempio: sollevamento, traslazione, scavo.

condizioni di funzionamento C

- Condizioni di lavoro e altri parametri che influenzano l'emissione vibratoria di una macchina per una particolare modalità operativa.
- Esempio: velocità di traslazione, superficie di movimento, peso del carico, materiale di escavazione.

attrezzatura di lavoro

- Componente o insieme di componenti che sostituisce la benna o l'utensile forniti nella configurazione prevista dal costruttore, modificando le prestazioni o ampliando le funzioni della macchina.
- Nota: L'attrezzatura di lavoro può essere un'attrezzatura intercambiabile così come definita nella Direttiva Macchine 2006/42/CE o un utensile.

INCIL

L'INDICE DELLA NORMA

PREMESSA

1 SCOPO E CAMPO DI APPLICAZIONE

2 RIFERIMENTI NORMATIVI

3 TERMINI E DEFINIZIONI

- 3.1 escavatore
- 3.2 escavatore compatto
- 3.3 caricatore
- 3.4 caricatore compatto 3.5 skid steer loader
- 3.6 terna
- 3.7 attrezzatura di lavoro
- 3.8 modalità operativa K
- 3.9 condizioni di funzionamento C
- 3.10 ciclo di lavoro
- 3.11 coefficiente di variazione C_V
- 3.12 valore rappresentativo aw.R

4 STRUMENTAZIONE

- 4.1 Generalità
- 4.2 Filtri di ponderazione in frequenza
- 4.3 Taratura

5 CARATTERIZZAZIONE DELL'EMISSIONE VIBRATORIA

- 5.1 Direzione delle vibrazioni
- 5.2 Posizione del trasduttore
- 5.3 Valore efficace dell'accelerazione
- 5.4 Valori delle vibrazioni
- 5.5 Asse di maggior vibrazione
- 5.6 Asse dominante delle vibrazioni

6 AMBIENTE DI MISURAZIONE

- 6.1 Generalità
- 6.2 Sito di prova
- 6.3 Pista con superficie dura
- 6.4 Pista con superficie morbida
- 6.5 Cumuli di terra

7 MISURAZIONE - PROCEDIMENTO

- 7.1 Generalità
- 7.2 Modalità operative e condizioni di funzionamento
- 7.3 Numero di misure
- 7.4 Valori rappresentativi dell'emissione vibratoria
- 7.5 Incertezza sul valore rappresentativo dell'emissione vibratoria
- 7.6 Arrotondamento dei valori di emissione vibratoria
- 7.7 Presentazione dei risultati

8 RAPPORTO DI PROVA

9 PRESENTAZIONE DEI RISULTATI

Allegato A (informativo)

Esempio numerico

- A.1 Emissione vibratoria di un dumper
- A.1.1 Modalità di funzionamento K1 trasferimento a pieno carico
- A.1.2 Calcolo del valore rappresentativo per K1
- A.1.3 Modalità di funzionamento K2 trasferimento scarico
- A.1.4 Calcolo del valore rappresentativo per K2
- A.1.5 Presentazione dei risultati
- A.2 Esempio di presentazione dei risultati in presenza di un asse dominante

Allegato B (informativo)

Emissione vibratoria espressa tramite la somma vettoriale delle componenti assiali

- B.1 Generalità
- B.2 Esempio di presentazione dei risultati

Allegato C (informativo)

Dichiarazione dell'emissione vibratoria in presenza di attrezzature di lavoro non previste in origine dal costruttore

Allegato D (informativo)

Incertezza sul valore di emissione vibratoria

Allegato E (normativo)

Escavatore

E.1 Modalità operative

E.2 Condizioni di funzionamento

E.2.1 K1 - Scavo con benna

E.2.2 K2 - Perforazione con martello demolitore

E.2.3 K3 - Trasferimento

Allegato F (normativo)

Caricatore

F.1 Modalità operative

F.2 Condizioni di funzionamento

F.2.1 K1 - Carico e trasporto

F.2.2 K2 - Moto ciclico a V

F.2.3 K3 - Trasferimento

Allegato G (normativo)

Terna

G.1 Modalità operative

G.2 Condizioni di funzionamento

G.2.1 K1 - Carico e trasporto

G.2.2 K2 - Moto ciclico a V

G.2.3 K3 - Scavo

G.2.4 K4 - Trasferimento

Bibliografia

INCI

MODALITA' OPERATIVE E CONDIZIONI DI FUNZIONAMENTO PRESE IN ESAME DALLA NORMA (DERIVANO IN PARTE DALLA UNI CEN/TS 15730:2009)

Macchina	Modalità operativa - K	Condizione di funzionamento - C
	K1 - Scavo con benna	C1 - Condizione unica
	K2 - Perforazione con martello	C1 - Perforazione verticale
Escavatore	<u>demolitore</u>	
	K3 - Trasferimento	C1 - Trasferimento su superficie dura
	K3 - Trasferimento	C2 - Trasferimento su superficie morbida
	K1 - Carico e trasporto	C1 – Carico e trasporto su superficie dura
	K1 - Canco e trasporto	C2 - Carico e trasporto su superficie morbida
Caricatore	K2 - Moto ciclico a V	C1 - Moto ciclico a V su superficie dura
Carreatore	K2 - Woto ciclico a V	C2 - Moto ciclico a V su superficie morbida
	K3 - Trasferimento	C1 - Trasferimento su superficie dura
	K5 - Trasferimento	C2 - Trasferimento su superficie morbida
	K1 - Carico e trasporto	C1 – Carico e trasporto su superficie dura
	K1 - Canco e trasporto	C2 - Carico e trasporto su superficie morbida
	K2 - Moto ciclico a V	C1 - Moto ciclico a V su superficie dura
Terna	K2 - Woto ciclico a V	C2 - Moto ciclico a V su superficie morbida
	K3 - Scavo	C1 - Condizione unica
	K4 - Trasferimento	C1 - Trasferimento su superficie dura
	114 - 11astermento	C2 - Trasferimento su superficie morbida

INCIL

MODALITA' OPERATIVE E CONDIZIONI DI FUNZIONAMENTO NON PRESENTI NELLA NORMA

- Le macchine movimento terra hanno la possibilità di utilizzare attrezzature di lavoro, prodotte dal medesimo costruttore della macchina o da ditte terze, che ampliano le funzioni o variano le prestazioni della macchina rispetto alla dotazione standard
- Le attrezzature di lavoro possono essere vendute contestualmente alla macchina o essere acquistate successivamente dall'utilizzatore; a chi spetta in tal caso dichiarare l'emissione vibratoria?
- Dopo lunghe e pacate discussioni tra i membri del GL06 si è trovato un accordo

INCIL

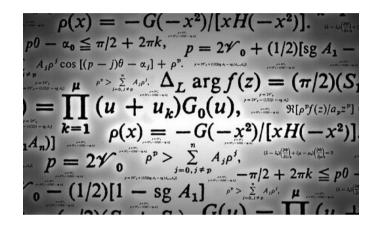
ALLEGATO C: DICHIARAZIONE DELL'EMISSIONE VIBRATORIA IN PRESENZA DI ATTREZZATURE DI LAVORO NON PREVISTE ALL'ORIGINE DAL COSTRUTTORE

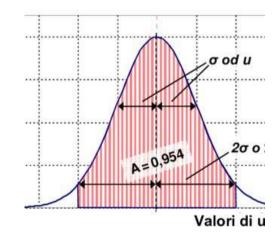
Sono previste 3 opzioni:

- 1. Il costruttore della macchina, sulla base del proprio patrimonio informativo, può stabilire quali sono le attrezzature di lavoro, le modalità operative e le condizioni di funzionamento non previste dalla norma per le quali è necessario rilevare i dati di emissione vibratoria; quindi, su base volontaria, eseguire in proprio le misure e riportare i risultati nel libretto d'uso e manutenzione
- 2. Qualora non voglia eseguire le misure, al fine di indirizzare l'utilizzatore sulle modalità di misura dell'emissione vibratoria, il costruttore può integrare le istruzioni per l'uso e la manutenzione con:
 - la/le modalità operativa/e tipiche di utilizzo della macchina con l'attrezzatura di lavoro montata
 - le condizioni di funzionamento ed i relativi valori dei parametri da utilizzare durante le prove (terreno di prova, velocità, carico, ecc.)
- 3. Qualora il costruttore non esegua le misure né indichi nel manuale come farle, la norma prevede che sia l'utilizzatore finale della macchina a stabilire se è necessario eseguire misurazioni strumentali per rilevare l'emissione vibratoria in presenza della specifica attrezzatura di lavoro ai fini delle proprie valutazioni di rischio aziendali

INCIL

 Ing. Stefano Casini
 02/12/2021
 15


PERCENTILE ED INCERTEZZA


Percentile

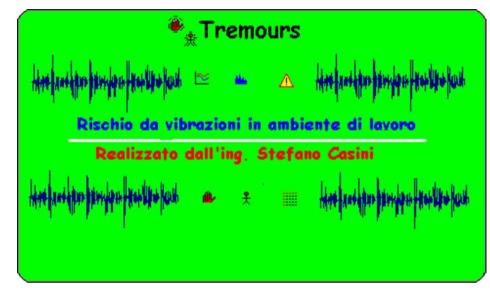
- La norma UNI propone una procedura per il calcolo del percentile 75%
- In letteratura esistono formule differenti per il calcolo del percentile per distribuzioni discrete
- Se il numero totale dei valori della serie è elevato e la loro dispersione è bassa le differenze dei risultati tra i vari metodi risultano trascurabili

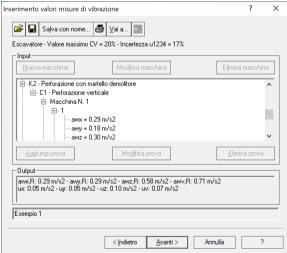
Incertezza

- La norma UNI propone una procedura per il calcolo dell'incertezza e dei valori numerici
- Si può determinare l'incertezza sull'emissione vibratoria utilizzando metodi alternativi di valutazione, riportandoli nel rapporto di prova

INCIL

QUANDO VERRA' PUBBLICATA LA NORMA


- Alla data odierna la norma è in Inchiesta Pubblica Finale (IPF) con scadenza 12/12/2021
- Se non emergono particolari osservazioni o criticità dalla fase di IPF, che richiedano la riconvocazione del Gruppo di Lavoro per esaminarle, la data di pubblicazione può ipotizzarsi nel primo trimestre 2022



INCIL

SOFTWARE DI AUSILIO

- Una volta pubblicata la Norma, verrà rilasciata una versione aggiornata del software TREMOURS – Rischio da vibrazioni in ambiente di lavoro - che conterrà una routine di calcolo per valutare l'emissione vibratoria delle Macchine Movimento Terra
- Il software potrà essere scaricato gratuitamente dal sito www.assoacustici.it

INCIL

GRAZIE PER L'ATTENZIONE ANCHE DA PARTE DEI COAUTORI

Michela Magnanimo magnanimo.michela@gmail.com

Christian Preti
CNR – STEMS, Torino, christian.preti@stems.cnr.it

Paolo Lenzuni INAIL, UOT D.R. Toscana, Firenze, p.lenzuni@inail.it

Stefano Casini INAIL, CONTARP D.R. Sicilia, Palermo, s.casini@inail.it

INCIL